3.2817 \(\int \frac{\sqrt{2+3 x} \sqrt{3+5 x}}{\sqrt{1-2 x}} \, dx\)

Optimal. Leaf size=98 \[ -\frac{1}{15} \sqrt{\frac{11}{3}} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ),\frac{35}{33}\right )-\frac{1}{3} \sqrt{1-2 x} \sqrt{3 x+2} \sqrt{5 x+3}-\frac{34}{15} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

[Out]

-(Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/3 - (34*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/
33])/15 - (Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/15

________________________________________________________________________________________

Rubi [A]  time = 0.0279844, antiderivative size = 98, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {101, 158, 113, 119} \[ -\frac{1}{3} \sqrt{1-2 x} \sqrt{3 x+2} \sqrt{5 x+3}-\frac{1}{15} \sqrt{\frac{11}{3}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )-\frac{34}{15} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/Sqrt[1 - 2*x],x]

[Out]

-(Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/3 - (34*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/
33])/15 - (Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/15

Rule 101

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a +
b*x)^m*(c + d*x)^n*(e + f*x)^(p + 1))/(f*(m + n + p + 1)), x] - Dist[1/(f*(m + n + p + 1)), Int[(a + b*x)^(m -
 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[c*m*(b*e - a*f) + a*n*(d*e - c*f) + (d*m*(b*e - a*f) + b*n*(d*e - c*f))
*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && GtQ[m, 0] && GtQ[n, 0] && NeQ[m + n + p + 1, 0] && (Integ
ersQ[2*m, 2*n, 2*p] || (IntegersQ[m, n + p] || IntegersQ[p, m + n]))

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{\sqrt{2+3 x} \sqrt{3+5 x}}{\sqrt{1-2 x}} \, dx &=-\frac{1}{3} \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}+\frac{1}{3} \int \frac{\frac{43}{2}+34 x}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=-\frac{1}{3} \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}+\frac{11}{30} \int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx+\frac{34}{15} \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx\\ &=-\frac{1}{3} \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}-\frac{34}{15} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )-\frac{1}{15} \sqrt{\frac{11}{3}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )\\ \end{align*}

Mathematica [A]  time = 0.141863, size = 92, normalized size = 0.94 \[ \frac{1}{90} \left (-35 \sqrt{2} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right ),-\frac{33}{2}\right )-30 \sqrt{1-2 x} \sqrt{3 x+2} \sqrt{5 x+3}+68 \sqrt{2} E\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )|-\frac{33}{2}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/Sqrt[1 - 2*x],x]

[Out]

(-30*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x] + 68*Sqrt[2]*EllipticE[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2]
 - 35*Sqrt[2]*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2])/90

________________________________________________________________________________________

Maple [C]  time = 0.009, size = 140, normalized size = 1.4 \begin{align*}{\frac{1}{2700\,{x}^{3}+2070\,{x}^{2}-630\,x-540}\sqrt{1-2\,x}\sqrt{2+3\,x}\sqrt{3+5\,x} \left ( 35\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -68\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -900\,{x}^{3}-690\,{x}^{2}+210\,x+180 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^(1/2)*(3+5*x)^(1/2)/(1-2*x)^(1/2),x)

[Out]

1/90*(2+3*x)^(1/2)*(3+5*x)^(1/2)*(1-2*x)^(1/2)*(35*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticF
(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))-68*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/11*(66
+110*x)^(1/2),1/2*I*66^(1/2))-900*x^3-690*x^2+210*x+180)/(30*x^3+23*x^2-7*x-6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2}}{\sqrt{-2 \, x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(1/2)*(3+5*x)^(1/2)/(1-2*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(5*x + 3)*sqrt(3*x + 2)/sqrt(-2*x + 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}{2 \, x - 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(1/2)*(3+5*x)^(1/2)/(1-2*x)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(2*x - 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{3 x + 2} \sqrt{5 x + 3}}{\sqrt{1 - 2 x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**(1/2)*(3+5*x)**(1/2)/(1-2*x)**(1/2),x)

[Out]

Integral(sqrt(3*x + 2)*sqrt(5*x + 3)/sqrt(1 - 2*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2}}{\sqrt{-2 \, x + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(1/2)*(3+5*x)^(1/2)/(1-2*x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(5*x + 3)*sqrt(3*x + 2)/sqrt(-2*x + 1), x)